Acta Cryst. (1996). C52, 2009-2014

Host-Guest Complexes of Furan-2,5-diylbis(diphenylmethanol): Structures of the 2:1 Adducts with Dimethylformamide, Dimethyl Sulfoxide and Pyridine

George Ferguson, ${ }^{a}$ Christopher Glidewell ${ }^{b}$ and Choudhury M. Zakaria ${ }^{c}$
${ }^{a}$ Department of Chemistry and Biochemistry, University of Guelph, Guelph, Ontario, Canada, NIG 2WI, ${ }^{\text {b }}$ School of Chemistry, University of St Andrews, St Andrews, Fife, KY16 9ST, Scotland, and ${ }^{\text {c Department of Chemistry, University }}$ of Rajshahi, Rajshahi 6205, Bangladesh. E-mail: cg@standrews.ac.uk

(Received 26 January 1996; accepted 4 March 1996)

Abstract

In the isomorphous $2: 1$ adducts of furan-2,5-diylbis(diphenylmethanol) with dimethylformamide, (DMF), [$\left.2\left(\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3}\right): 1\left(\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}\right)\right]$ (II), and with dimethyl sulfoxide (DMSO), $\left[2\left(\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3}\right): 1\left(\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}\right)\right]$ (III), the centrosymmetric molecular aggregate consists of two molecules of the diol, linked via $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds involving only the hydroxyl O atoms, and one molecule of either DMF or DMSO disordered across other centres of inversion and linked to the diol dimer by $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds. In the $2: 1$ adduct with pyridine, [$2\left(\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3}\right)$:1 $\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)$] (IV), the molecular aggregate is similar in structure to those in (II) and (III), but with detailed differences in the hydrogen-bonding scheme within the diol dimer.

Comment

Organic diols of type $\left[R R^{\prime} \mathrm{C}(\mathrm{OH})\right]_{2} X$, where R and R^{\prime} represent phenyl or other large aryl substituents and X represents a spacer group of limited flexibility, are versatile hosts for the capture of a wide range of guest molecules, and in most cases the guest is bound to the host by hydrogen bonds. We have recently investigated the structural behaviour of a range of such host-guest adducts formed by ferrocene-1, 1^{\prime} diylbis(diphenylmethanol), $\mathrm{Fe}\left[\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{CPh}_{2} \mathrm{OH}\right]_{2}$ (Ferguson, Gallagher, Glidewell \& Zakaria, 1993a; Glidewell, Ferguson, Lough \& Zakaria, 1994). This diol itself crystallizes as hydrogen-bonded dimers, in which the hydroxyl H atoms appear from the X-ray diffraction to be disordered (Ferguson, Gallagher, Glidewell \& Zakaria, 1993b) but are found from solid-state NMR to be mobile (Aliev, Harris, Shannon, Glidewell, Zakaria \& Schofield, 1995). The unsolvated parent diol of the compounds decribed here, furan-2,5-diylbis(diphenylmethanol), $\mathrm{C}_{4} \mathrm{H}_{2} \mathrm{O}\left(\mathrm{CPh}_{2} \mathrm{OH}\right)_{2}$ (I), also crystallizes as
hydrogen-bonded dimers, but with the O atom in the furan spacer group participating in the hydrogen-bonding in addition to the hydroxyl groups (Glidewell, Zakaria \& Ferguson, 1996).

The diol (I) has now been found to form adducts having host-guest ratios of $2: 1$ with dimethylformamide (II), dimethyl sulfoxide (III), pyridine (IV) and 1,4dioxan (V), and a $1: 1$ adduct (VI) with methanol (see Experimental section); here we report the structures of the adducts (II)-(IV).

(II)

(III)

(IV)

Crystals of (II) and (III) are isostructural; views of the asymmetric units are given in Figs. 1 and 3. In each compound, the molecular aggregate (Figs. 2 and 4) consists of two molecules of the diol and one of the guest molecule, DMF or DMSO. In each of (II) and (III), the hydroxyl H atom on Ol is disordered over two sites with equal occupancy, while that on O 2 is ordered. The guest molecules are disordered across the centre of inversion at $(0,1 / 2,1 / 2)$; the diols are linked across the

Fig. 1. A view of the asymmetric unit of (II) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

[^0]$$
\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} \cdot 0.5 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}, \mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS} \text { AND } \mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}
$$
inversion centre at ($1 / 2,1 / 2,1 / 2$) into hydrogen-bonded dimers with the H atom on O 2 acting as donor to O 1 of the molecule at $(1-x, 1-y, 1-z)$, giving a motif whose graph set (Etter, 1990; Etter, MacDonald \& Bernstein, 1990; Bernstein, Davis Shimoni \& Chang, 1995) is $R_{2}^{2}(16)$ (Figs. 2 and 4). The disordered H atoms

Fig. 2. A view of a hydrogen-bonded dimer with the dimethylformamide molecules. For clarity, all phenyl ring atoms have been omitted and only one of the two possible orientations of the disordered dimethylformamide molecule is shown.

Fig. 3. A view of the asymmetric unit of (III) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 4. A view of a hydrogen-bonded dimer with dimethyl sulfoxide molecules. Phenyl rings are omitted for clarity and only one of the two possible orientations of the disordered dimethyl sulfoxide molecule is shown.
on Ol act (Table 4) as hydrogen-bond donors to the oxygen O 61 of the guest molecules: H1A acts as donor towards the guest at (x, y, z), and $\mathrm{H} 1 B$ as donor towards the guest at ($1-x, 1-y, 1-z$); each motif has graph set D. Within the cyclic motif defined by O1 and O61 in the molecules at (x, y, z) and ($1-x, 1$ $-y, 1-z$), there is no necessary correlation between the orientation of the two types of hydrogen bond. In this respect, the hydrogen bonding in (II) and (III) differs from that in the dimers of ferrocene-1, 1^{\prime}-diylbis(diphenylmethanol) (Ferguson, Gallagher, Glidewell \& Zakaria, 1993b). Finally, the orientational disorder of the guest molecules serves to link the diol dimer units into chains parallel to the a direction.
The asymmetric unit of compound (IV) is shown in Fig. 5 and although it is not isomorphous with (II) and (III), it too contains centrosymmetric molecular aggregates (Fig. 6) with pyridine molecules disordered over the inversion centres at $(0,1 / 2,1 / 2)$ and the hydroxyl H atom on O 1 disordered over two equally

Fig. 5. A view of the asymmetric unit of (IV) with our numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 6. A view of a hydrogen-bonded dimer with pyridine. Phenyl rings are removed for clarity and only one of the two possible orientations of the disordered pyridine molecule is shown.
populated sites. The diol components are linked across the inversion centre at ($1 / 2,1 / 2,1 / 2$) to form hydro-gen-bonded dimers (Fig. 6, Table 3) containing both an $R_{2}^{2}(16)$ motif involving H 2 on O 2 and an $R_{2}^{2}(4)$ motif involving $\mathrm{H} 1 A$ on O 1 ; there are, in addition, weak intramolecular hydrogen bonds involving O 51 as acceptor, similar to those observed in the structure of (I) (Glidewell, Zakaria \& Ferguson, 1996), so that these dimers differ significantly from those in (II) and (III). $\mathrm{H} 1 B$ on O 1 acts as donor towards N 61 of the pyridine guest in a motif having graph set D, and the orientational disorder of the guest molecules serves to link the dimer units into chains parallel to a.
The principal differences between (II) and (III) on the one hand and (IV) on the other, arise simply because the O atoms in DMF and DMSO in (II) and (III) each have two lone pairs to participate as acceptors in $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding whereas the pyridine in (IV) has only one lone pair available.

The dimensions and conformations of the diol components in (II)-(IV) (Figs. 1,3,5, Table 5) are all similar to those found in the free diol (I) (Glidewell, Zakaria \& Ferguson, 1996). In every case, the conformation of the diol approaches $C_{s}(m)$ mirror symmetry; it is possible that this conformation, which makes (I) an ideal host molecule for the formation of host-guest adducts, is dominated by the steric requirements of the phenyl groups.

Experimental

Adducts were prepared by crystallizing the diol (I) (Glidewell, Zakaria \& Ferguson, 1996) from the appropriate guest as solvent. Analyses: (II), found C $81.5, \mathrm{H} 6.1, \mathrm{~N} 1.5 ; \mathrm{C}_{63} \mathrm{H}_{5} \mathrm{NO}_{4}$ requires C 80.7 , H $5.9, \mathrm{~N} 1.5 \%$: (III), found: C 79.8, H 5.9 ; $\mathrm{C}_{62} \mathrm{H}_{54} \mathrm{SO}_{4}$ requires C 79.0, H 5.7\%: (IV), found: C 82.5, H 5.5, N 1.5 : $\mathrm{C}_{65} \mathrm{H}_{53} \mathrm{NO}_{4}$ requires C 82.7, H 5.6 , N 1.5% : (V), found: C 79.9, H 5.9; $\mathrm{C}_{64} \mathrm{H}_{56} \mathrm{O}_{8}$ requires C $80.6, \mathrm{H} 5.9 \%$: (VI), found: C 79.9, $\mathrm{H} 5.9 ; \mathrm{C}_{31} \mathrm{H}_{28} \mathrm{O}_{4}$ requires C $80.2, \mathrm{H} 5.9 \%$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra of each adduct in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solution were each the sum of the spectra of the individual components, in the appropriate molar ratio.

Compound (II)

Crystal data
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} .0 .5 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}$
Mo $K \alpha$ radiation
$M_{r}=469.04$
Triclinic
$P \overline{1}$
$a=8.7825(13) \AA$
$b=11.6787(10) \AA$
$c=13.194(2) \AA$
$\alpha=81.142(10)^{\circ}$
$\beta=71.847(10)^{\circ}$
$\gamma=85.672(8)^{\circ}$
$V=1270.1(3) \AA^{3}$
$Z=2$
$D_{x}=1.226 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
none
5499 measured reflections
5499 independent reflections
2526 observed reflections

$$
[I>2 \sigma(I)]
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0585$
$w R\left(F^{2}\right)=0.1971$
$S=0.876$
5499 reflections
346 parameters
H atoms riding (SHELXL93 defaults, $\mathrm{C}-\mathrm{H}$ 0.93-0.96, $\mathrm{O}-\mathrm{H} 0.82 \AA$)
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1216 P)^{2}\right]$ where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\theta_{\text {max }}=26.90^{\circ}$
$h=-11 \rightarrow 11$
$k=0 \rightarrow 14$
$l=-16 \rightarrow 16$
3 standard reflections frequency: 120 min
intensity decay: 3.0%

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (II)

$U_{\text {eq }}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
01	0.4570 (3)	0.40730 (15)	0.63226 (15)	0.0535 (5)
02	0.7575 (2)	0.45806 (14)	0.22549 (14)	0.0529 (5)
051	0.6079 (2)	0.31384 (14)	0.43915 (13)	0.0427 (5)
C1	0.5026 (3)	0.2863 (2)	0.6341 (2)	0.0423 (6)
C2	0.7339 (3)	0.3352 (2)	0.2446 (2)	0.0424 (6)
C 11	0.3567 (3)	0.2201 (2)	0.6389 (2)	0.0480 (7)
C12	0.2073 (4)	0.2472 (3)	0.7064 (2)	0.0621 (8)
C13	0.0754 (4)	0.1857 (4)	0.7151 (3)	0.0833 (12)
C14	0.0885 (5)	0.0968 (4)	0.6567 (4)	0.0883 (13)
C15	0.2361 (5)	0.0684 (3)	0.5887 (3)	0.0837 (11)
C16	0.3678 (4)	0.1293 (3)	0.5796 (3)	0.0635 (9)
C21	0.5570 (3)	0.2446 (2)	0.7335 (2)	0.0479 (7)
C22	0.5999 (4)	0.3213 (3)	0.7874 (3)	0.0721 (10)
C23	0.6471 (5)	0.2833 (4)	0.8778 (3)	0.0900 (13)
C24	0.6522 (5)	0.1685 (5)	0.9151 (3)	0.0926 (14)
C25	0.6120 (5)	0.0911 (4)	0.8622 (3)	0.0898 (13)
C26	0.5623 (4)	0.1275 (3)	0.7725 (3)	0.0678 (9)
C31	0.5753 (3)	0.3095 (2)	0.2305 (2)	0.0457 (7)
C32	0.5149 (4)	0.3808 (3)	0.1563 (2)	0.0587 (8)
C33	0.3756 (5)	0.3565 (4)	0.1394 (3)	0.0767 (10)
C34	0.2901 (4)	0.2594 (4)	0.1956 (3)	0.0781 (11)
C35	0.3496 (4)	0.1883 (3)	0.2684 (3)	0.0740 (10)
C36	0.4894 (4)	0.2116 (3)	0.2857 (3)	0.0603 (8)
C41	0.8697 (3)	0.2814 (2)	0.1597 (2)	0.0437 (6)
C42	0.9733 (4)	0.3505 (3)	0.0759 (2)	0.0573 (8)
C43	1.0892 (4)	0.3013 (3)	-0.0044 (2)	0.0689 (10)
C44	1.1072 (4)	0.1837 (3)	-0.0007 (2)	0.0658 (9)
C45	1.0072 (4)	0.1137 (3)	0.0835 (2)	0.0589 (8)
C46	0.8884 (4)	0.1625 (2)	0.1624 (2)	0.0533 (7)
C52	0.6393 (3)	0.2725 (2)	0.5334 (2)	0.0399 (6)
C53	0.7884 (3)	0.2254 (2)	0.5124 (2)	0.0473 (7)
C54	0.8541 (3)	0.2372 (2)	0.3980 (2)	0.0471 (7)
C55	0.7424 (3)	0.2896 (2)	0.3562 (2)	0.0395 (6)
O61 \dagger	0.2754 (5)	0.4662 (4)	0.4963 (4)	0.0677 (12)
C62 \dagger	0.1333 (8)	0.4910 (5)	0.5377 (6)	0.064 (2)
N63 \dagger	0.0206 (9)	0.5148 (8)	0.4899 (5)	0.064 (2)
C64 \dagger	-0.1432 (9)	0.5531 (8)	0.5429 (8)	0.100 (3)
C65 \dagger	0.0629 (11)	0.5014 (8)	0.3761 (6)	0.093 (2)
\dagger Site occupancy $=0.50$.				

Compound (III)

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} .0 .5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS}$
$M_{r}=471.56$
Triclinic
$P \overline{1}$
$a=8.802$ (3) \AA
$b=11.707(3) \AA$
$c=13.162(4) \AA$
$\alpha=80.170(12)^{\circ}$
$\beta=72.074$ (14) ${ }^{\circ}$
$\gamma=84.187(13)^{\circ}$
$V=1269.8(7) \AA^{3}$
$Z=2$
$D_{x}=1.233 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection
Enraf-Nonius CAD-4 diffractometer
$\theta / 2 \theta$ scans
Absorption correction: none
2367 measured reflections
2367 independent reflections 1463 observed reflections $[I>2 \sigma(I)]$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0426$
$w R\left(F^{2}\right)=0.1093$
$S=0.999$
2367 reflections
336 parameters
H atoms riding (SHELXL93 AFIX defaults, C-H 0.93 , $\mathrm{O}-\mathrm{H} 0.82 \AA$)

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=7.6-15.3^{\circ}$
$\mu=0.119 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block cut from a larger piece
$0.38 \times 0.37 \times 0.30 \mathrm{~mm}$
Colourless

C31	$0.5679(5)$	$0.3100(3)$	$0.2285(3)$	$0.0490(10)$
C32	$0.5070(6)$	$0.3810(4)$	$0.1543(3)$	$0.0682(12)$
C33	$0.3669(7)$	$0.3575(5)$	$0.1368(4)$	$0.0847(14)$
C34	$0.2852(6)$	$0.2623(5)$	$0.1937(4)$	$0.0873(15)$
C35	$0.3431(6)$	$0.1903(4)$	$0.2677(4)$	$0.0856(14)$
C36	$0.4840(6)$	$0.2135(4)$	$0.2844(3)$	$0.0693(12)$
C41	$0.8619(4)$	$0.2815(3)$	$0.1574(3)$	$0.0441(10)$
C42	$0.9623(5)$	$0.3502(3)$	$0.0729(3)$	$0.0654(12)$
C43	$1.0798(5)$	$0.3004(4)$	$-0.0061(3)$	$0.0768(14)$
C44	$1.1028(5)$	$0.1829(4)$	$-0.0015(3)$	$0.0728(13)$
C45	$1.0033(5)$	$0.1138(3)$	$0.0831(3)$	$0.0647(12)$
C46	$0.8836(5)$	$0.1626(3)$	$0.1607(3)$	$0.0555(11)$
C52	$0.6382(5)$	$0.2705(3)$	$0.5311(3)$	$0.0470(10)$
C53	$0.7844(5)$	$0.2198(3)$	$0.5107(3)$	$0.0570(11)$
C54	$0.8476(5)$	$0.2323(3)$	$0.3961(3)$	$0.0539(11)$
C55	$0.7367(5)$	$0.2888(3)$	$0.3538(3)$	$0.0448(10)$
O61 \dagger	$0.2615(6)$	$0.4739(5)$	$0.4845(4)$	$0.084(2)$
S62 \dagger	$0.1024(4)$	$0.4281(2)$	$0.4889(2)$	$0.0967(9)$
C63 \dagger	$0.0423(17)$	$0.5009(13)$	$0.3736(7)$	$0.117(6)$
C64 \dagger	$-0.0627(16)$	$0.4956(14)$	$0.5835(10)$	$0.151(6)$

Compound (IV)

Crystal data
$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} .0 .5 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}$
$M_{r}=472.04$
Triclinic
$P \overline{1}$
$a=8.9789$ (13) \AA
$b=11.814$
(3) \AA
$c=13.329$ (3) \AA
$\alpha=96.55$ (2)
$\beta=109.47(2)^{\circ}$
$\gamma=102.40$ (2)
$V=1275.1(4) \AA^{3}$
$Z=2$
$D_{x}=1.229 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection
Enraf-Nonius CAD-4
diffractometer
$\theta / 2 \theta$ scans
Absorption correction:
none
4465 measured reflections
4465 independent reflections
1808 observed reflections
$[I>2 \sigma(I)]$

Refinement
Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.0412$
$w R\left(F^{2}\right)=0.1278$
$S=0.879$
4465 reflections
354 parameters
H atoms riding (SHELXL93
defaults, C-H 0.93, OH $0.82 \AA$)

Mo $K \alpha$ radiation
$\lambda=0.7107 \AA$
Cell parameters from 25 reflections
$\theta=10.1-17.4^{\circ}$
$\mu=0.078 \mathrm{~mm}^{-1}$
$T=294$ (1) K
Block cut from a larger piece
$0.39 \times 0.39 \times 0.35 \mathrm{~mm}$
Colourless

$$
\begin{aligned}
& \theta_{\max }=24.94^{\circ} \\
& h=-10 \rightarrow 10 \\
& k=0 \rightarrow 14 \\
& l=-15 \rightarrow 15
\end{aligned}
$$

3 standard reflections frequency: 120 min intensity decay: 6.3%

$$
w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0694 P)^{2}\right]
$$

$$
\text { where } P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3
$$

$(\Delta / \sigma)_{\max }=0.023$
$\Delta \rho_{\text {max }}=0.264 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.160 \mathrm{e}^{-3}$
Extinction correction: none
Atomic scattering factors from International Tables for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4)

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (IV)

$U_{\mathrm{eq}}=(1 / 3) \sum_{i} \sum_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}, \mathbf{a}_{j}$.				
	x	y	z	$U_{\text {eq }}$
O1	0.3995 (3)	0.41886 (14)	0.38461 (13)	0.0645 (5)
O 2	0.5665 (2)	0.44829 (14)	0.77902 (13)	0.0611 (5)
O51	0.4623 (2)	$0.31118(13)$	0.56416 (12)	0.0485 (4)
C1	0.3603 (3)	0.2916 (2)	0.3692 (2)	0.0496 (6)
C2	0.5492 (3)	0.3237 (2)	0.7583 (2)	0.0520 (7)
C11	0.5030 (3)	0.2523 (3)	0.3536 (2)	0.0567 (7)
C12	0.5780 (4)	0.3035 (3)	0.2899 (2)	0.0859 (10)
C13	0.6995 (5)	0.2684 (5)	0.2694 (3)	0.1178 (14)
C14	0.7518 (4)	0.1795 (5)	0.3120 (3)	0.1097 (15)
C15	0.6821 (5)	0.1237 (4)	0.3781 (3)	0.1094 (13)
C16	0.5539 (4)	0.1620 (3)	0.3981 (2)	0.0824 (9)
C21	0.2052 (3)	0.2397 (2)	0.2678 (2)	0.0506 (6)
C22	0.1128 (3)	0.3090 (3)	0.2148 (2)	0.0677 (8)
C23	-0.0240 (4)	0.2601 (4)	0.1208 (3)	0.0813 (9)
C24	-0.0714 (4)	0.1423 (4)	0.0806 (2)	0.0874 (10)
C25	0.0169 (4)	0.0709 (3)	0.1324 (2)	0.0809 (9)
C26	0.1558 (3)	0.1201 (3)	0.2247 (2)	0.0666 (8)
C31	0.7163 (3)	0.3023 (2)	0.7685 (2)	0.0548 (7)
C32	0.8588 (4)	0.3774 (3)	0.8462 (2)	0.0740 (8)
C33	1.0092 (4)	0.3566 (4)	0.8587 (3)	0.0950 (11)
C34	1.0198 (4)	0.2617 (4)	0.7944 (3)	0.0971 (11)
C35	0.8812 (4)	0.1874 (3)	0.7177 (3)	0.0870 (10)
C36	0.7290 (4)	0.2065 (3)	0.7045 (2)	0.0710 (8)
C41	0.4939 (3)	0.2731 (2)	0.8441 (2)	0.0512 (6)
C42	0.4692 (3)	0.3442 (3)	0.9229 (2)	0.0664 (8)
C43	0.4180 (4)	0.2968 (3)	1.0001 (2)	0.0812 (9)
C44	0.3914 (4)	0.1791 (3)	0.9993 (2)	0.0820 (10)
C45	0.4160 (4)	0.1069 (3)	0.9217 (3)	0.0782 (9)
C46	0.4683 (3)	0.1541 (2)	0.8448 (2)	0.0660 (8)
C52	0.3334 (3)	0.2581 (2)	0.4681 (2)	0.0488 (6)
C53	0.2162 (3)	0.1855 (2)	0.4892 (2)	0.0614 (7)
C54	0.2737 (3)	0.1933 (2)	0.6045 (2)	0.0617 (7)
C55	0.4223 (3)	0.2696 (2)	0.6470 (2)	0.0500 (6)
N61 \dagger	0.1742 (7)	0.4888 (5)	0.4721 (5)	0.104 (2)
C62 \dagger	0.0848 (8)	0.5539 (5)	0.4137 (5)	0.091 (2)
C63 \dagger	-0.0558 (8)	0.5708 (6)	0.4255 (6)	0.110 (3)
C64 \dagger	-0.1087 (9)	0.5198 (7)	0.4999 (7)	0.102 (3)
C65 \dagger	-0.0198(10)	0.4532 (6)	0.5605 (6)	0.082 (2)
C66 \dagger	0.1197 (9)	0.4397 (5)	0.5445 (5)	0.105 (3)

\dagger Site occupancy $=0.50$.
Table 4. Hydrogen-bonding geometry $\left(\AA{ }^{\circ},^{\circ}\right)$ for compounds (II), (III) and (IV)

$D-\mathrm{H} \cdots \mathrm{A}$	D-H	H \cdots A	D \cdots A	$D-\mathrm{H} \cdots A$
(II)				
O1-H1A \cdots. $\mathrm{O61}$	0.82	1.92	2.733 (5)	176
OI-H1B . . $0661^{\text {i }}$	0.82	1.99	2.802 (5)	170
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{Ol}^{1}$	0.82	1.99	2.793 (3)	167
(III)				
O1-H1A . . O 61	0.82	2.10	2.895 (6)	171
O1-H1B . . 661^{1}	0.82	2.01	2.825 (6)	173
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\text {i }}$	0.82	2.00	2.808 (4)	169
(IV)				
OI-H1A . $\mathrm{Ol}^{\text {i }}$	0.82	2.46	3.140 (2)	141
O1-H1B..N61	0.82	2.13	2.865 (7)	149
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{1}$	0.82	2.08	2.887 (2)	167
O1-H1A \cdots O51	0.82	2.51	2.787 (2)	101
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 1$	0.82	2.49	2.865 (2)	109

Table 5. Selected bond lengths (\AA) and torsion angles $\left({ }^{\circ}\right)$ for compounds (II), (III) and (IV)

	(II)	(III)	(IV)
O1-C1	$1.439(3)$	$1.430(4)$	$1.442(3)$
O2-C2	$1.437(3)$	$1.429(4)$	$1.431(3)$
O51-C52	$1.366(3)$	$1.369(4)$	$1.374(3)$
O51-C55	$1.383(3)$	$1.379(4)$	$1.379(3)$

C1-C11	$1.525(4)$	$1.521(5)$	$1.520(3)$
C1-C21	$1.532(4)$	$1.530(5)$	$1.527(3)$
C1-C52	$1.508(3)$	$1.511(5)$	$1.498(3)$
C2-C31	$1.519(4)$	$1.534(5)$	$1.539(3)$
C2-C41	$1.530(3)$	$1.524(4)$	$1.522(3)$
C2-C55	$1.510(3)$	$1.493(5)$	$1.501(3)$
C52-C53	$1.344(4)$	$1.329(5)$	$1.336(3)$
C53-C54	$1.428(4)$	$1.424(5)$	$1.434(3)$
C54-C55	$1.335(4)$	$1.333(4)$	$1.333(3)$
C52-C1-C11-C12	$-161.5(2)$	$-162.7(3)$	$-160.4(2)$
C52-C1-C21-C22	$100.1(3)$	$100.3(4)$	$109.3(3)$
C55-C2-C31-C32	$152.9(2)$	$153.2(3)$	$156.6(2)$
C55-C2-C41-C42	$-125.8(3)$	$-126.2(4)$	$-118.4(3)$
O1-C1-C52-O51	$-57.0(3)$	$-56.3(4)$	$-55.4(3)$
C11-C1-C52-O51	$61.6(3)$	$62.7(4)$	$63.2(3)$
C21-C1-C52-O51	$-176.0(2)$	$-175.6(3)$	$-173.9(2)$
O2-C2-C55-O51	$75.7(3)$	$74.2(4)$	$62.1(2)$
C31-C2-C55-O51	$-46.3(3)$	$-47.5(4)$	$-58.6(3)$
C41-C2-C55-O51	$-167.4(2)$	$-168.5(3)$	$179.7(2)$

None of the crystals diffracted significantly at θ values $>$ 20°. Data collection for (III) was terminated at $\theta=20^{\circ}$ when it became obvious that no significant reflections were being measured. In all three compounds, the solvate molecules lie disordered (with 0.5 occupancy) about inversion centres. In the initial refinements, the solvate occupancies were allowed to refine, but as they did not move significantly from 0.5 values, the occupancies were fixed at 0.5 in subsequent refinement cycles. In each case the disorder of the solvate was allowed for by appropriate constraints and restraints during the SHELXL93 (Sheldrick, 1993) refinement. For each compound, difference map sections normal to the relevant $\mathrm{C}-\mathrm{O}$ bonds were calculated with the COFOUR option in NRCVAX94 (Gabe, Le Page, Charland, Lee \& White 1989) and showed that the hydroxyl H atom on Ol was disordered over two sites while that on O 2 was ordered; these H atoms were allowed for in the SHELXL93 refinement using the AFIX commands. Examination of the structures with PLATON showed that there were no solvent-accessible voids in the crystal lattices.

For all compounds, data collection: CAD-4/PC (EnrafNonius, 1992); cell refinement: SET4 and CELDIM (EnrafNonius, 1992); data reduction: DATRD2 (NRCVAX94; Gabe, Le Page, Charland, Lee \& White, 1989); program(s) used to solve structures: SHELXS86 (Sheldrick, 1985); program(s) used to refine structures: NRCVAX94, SHELXL93 (Sheldrick, 1993); molecular graphics: NRCVAX94, PLATON (Spek, 1995a), PLUTON (Spek 1995b); software used to prepare material for publication: NRCVAX94, SHELXL93 and PREPCIF in WordPerfect.

GF thanks NSERC (Canada) for Research Grants.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates and complete geometry have been deposited with the IUCr (Reference: AB1360). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHI 2HU, England.

References

Aliev, A. E., Harris, K. D. M., Shannon, I. J., Glidewell, C., Zakaria, C. M. \& Schofield, P. A. (1995). J. Phys. Chem. 99, 12008-1 2015. Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Enraf-Nonius (1992). CAD-4/PC Software. Version 1.1. EnrafNonius, Delft, The Netherlands
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.

$$
\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} \cdot 0.5 \mathrm{C}_{3} \mathrm{H}_{7} \mathrm{NO}, \mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} \cdot 0.5 \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{OS} \text { AND } \mathrm{C}_{30} \mathrm{H}_{24} \mathrm{O}_{3} \cdot 0.5 \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}
$$

Etter, M. C., MacDonald, J. C. \& Bernstein, J. (1990). Acta Cryst. B46, 256-262.
Ferguson, G., Gallagher, J. F., Glidewell, C. \& Zakaria, C. M. (1993a). J. Chem. Soc. Dalton Trans, pp. 3499-3506.

Ferguson, G., Gallagher, J. F., Glidewell, C. \& Zakaria, C. M. (1993b). Acta Cryst. C49, 967-971.
Gabe, E. J., Le Page, Y., Charland, J.-P., Lee, F. L. \& White, P. S. (1989). J. Appl. Cryst. 22, 384-387.

Glidewell, C., Ferguson, G., Lough, A. J. \& Zakaria, C. M. (1994). J. Chem. Soc. Dalton Trans, pp. 1971-1982.

Glidewell, C., Zakaria, C. M. \& Ferguson, G. (1996). Acta Cryst. C52. 1305-1309.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Spek, A. L. (1995a). PLATON. Molecular Geometry Program, July 1995 version. University of Utrecht, Utrecht, Holland.
Spek, A. L. (1995b). PLUTON. Molecular Graphics Program, July 1995 version. University of Utrecht, Utrecht, Holland.

Acta Cryst. (1996). C52, 2014-2017

1-[3,5-Bis(trifluoromethyl)phenyl]-8-(4methoxyphenyl)naphthalene: a Novel Three-Dimensional Non-Linear Optical Chromophore

André Bahl, ${ }^{a}$ Walter Grahn ${ }^{a}$ and Peter G. Jones ${ }^{b *}$

${ }^{a}$ Institut fuir Organische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany, and ${ }^{b}$ Institut fuir Anorganische und Analytische Chemie, Technische Universität Braunschweig, Postfach 3329, 38023 Braunschweig, Germany. E-mail:
jones@xray36.anchem.nat.tu-bs.de
(Received 21 May 1996; accepted 11 June 1996)

Abstract

There are two molecules of $\mathrm{C}_{25} \mathrm{H}_{16} \mathrm{~F}_{6} \mathrm{O}$ in the asymmetric unit. The interplanar angles between the naphthalene moiety and the phenyl substituents are $51.7,52.5(1)^{\circ}$ in the first molecule and 59.8, $58.1(1)^{\circ}$ in the second for the trifluoromethyl- and methoxy-substituted rings, respectively. Calculations indicate that these are 'soft' parameters.

Comment

As part of our continuing efforts to design materials for frequency doubling of diode laser sources, we are especially interested in donor (D)-acceptor (A)-substituted diarylnaphthalenes (Bahl et al., 1995) such as the title compound (1). According to the classification introduced by Nalva, Watanabe \& Miyata (1995) (oneand two-dimensional non-linear optical chromophores),
these molecules represent a novel three-dimensional type. The three-dimensional chromophoric system is constituted by two non-conjugated biphenylene subunits and a potential through-space charge-transfer (CT) subchromophore. To estimate the effectiveness of these interactions, which depend strongly on the inter-aryl angles and distances, and also to determine whether the substances crystallize in non-centrosymmetric space groups (a prerequisite for frequency doubling), we have embarked on a series of X-ray structure determinations (Jones, Grahn, Bahl \& Reisner, 1995).

(3)

Compound (1) crystallizes in a centrosymmetric space group, which renders the crystals unsuitable for applications of quadratic non-linear optical effects. The two independent molecules, ($1 a$) and ($1 b$) [($1 a$) is shown in Fig. 1], display different conformations, the differences arising mostly from the relative orientation of the ring systems.

Fig. 1. One of the two independent molecules of the title compound in the crystal. Radii are arbitrary.

As is known from X -ray structures of other 1,8 diarylnaphthalenes (Clough, Kung, Marsh \& Roberts 1976; Wahl, Krieger, Schweitzer \& Staab, 1984; Jones et al., 1995; Tsuji et al., 1993), the steric strain

[^0]: © 1996 International Union of Crystallography
 Printed in Great Britain - all rights reserved

